pygsti.extras.interpygate

Interpygate Sub-package

Submodules

Package Contents

Classes

PhysicalProcess

InterpolatedDenseOp

TODO: update docstring

InterpolatedOpFactory

An object that can generate "on-demand" operators (can be SPAM vecs, etc., as well) for a Model.

Functions

vec(matrix)

A function that vectorizes a matrix.

unvec(vectorized)

A function that vectorizes a process in the basis of matrix units, sorted first

run_process_tomography(state_to_density_matrix_fn[, ...])

A function to compute the process matrix for a quantum channel given a function

class pygsti.extras.interpygate.PhysicalProcess(num_params, process_shape, aux_shape=None, num_params_evaluated_as_group=0)

Bases: _PhysicalBase

abstract create_process_matrix(v, comm=None)
abstract create_process_matrices(v, grouped_v, comm=None)
class pygsti.extras.interpygate.InterpolatedDenseOp(target_op, base_interpolator, aux_interpolator=None, initial_point=None, frozen_parameter_values=None, frozen_parameter_indices=None)

Bases: pygsti.modelmembers.operations.DenseOperator

TODO: update docstring An operator that behaves like a dense super-operator matrix.

This class is the common base class for more specific dense operators.

Parameters

mxnumpy.ndarray

The operation as a dense process matrix.

basisBasis or {‘pp’,’gm’,’std’} or None

The basis used to construct the Hilbert-Schmidt space representation of this state as a super-operator. If None, certain functionality, such as access to Kraus operators, will be unavailable.

evotypeEvotype or str

The evolution type. The special value “default” is equivalent to specifying the value of pygsti.evotypes.Evotype.default_evotype.

state_spaceStateSpace, optional

The state space for this operation. If None a default state space with the appropriate number of qubits is used.

Attributes

basenumpy.ndarray

Direct access to the underlying process matrix data.

Initialize a new LinearOperator

property num_params

Get the number of independent parameters which specify this object.

Returns

int

classmethod create_by_interpolating_physical_process(target_op, physical_process, parameter_ranges=None, parameter_points=None, comm=None, mpi_workers_per_process=1, interpolator_and_args=None, verbosity=0)
to_vector()

Get this object’s parameters as a 1D array of values.

Returns

numpy.ndarray

from_vector(v, close=False, dirty_value=True)

Initialize this object using a vector of parameters.

Parameters
vnumpy array

The 1D vector of parameters. Length must == num_params()

closebool, optional

Whether v is close to the current parameter vector.

dirty_valuebool, optional

The value to set this object’s “dirty flag” to before exiting this call. This is passed as an argument so it can be updated recursively. Leave this set to True unless you know what you’re doing.

Returns

None

abstract transform_inplace(S)

Update operation matrix O with inv(s) * O * s.

Generally, the transform function updates the parameters of the operation such that the resulting operation matrix is altered as described above. If such an update cannot be done (because the operation parameters do not allow for it), ValueError is raised.

In this particular case any transform of the appropriate dimension is possible, since all operation matrix elements are parameters.

Parameters
sGaugeGroupElement

A gauge group element which specifies the “s” matrix (and it’s inverse) used in the above similarity transform.

Returns

None

class pygsti.extras.interpygate.InterpolatedOpFactory(target_factory, argument_indices, base_interpolator, aux_interpolator=None)

Bases: pygsti.modelmembers.operations.opfactory.OpFactory

An object that can generate “on-demand” operators (can be SPAM vecs, etc., as well) for a Model.

It is assigned certain parameter indices (it’s a ModelMember), which definie the block of indices it may assign to its created operations.

The central method of an OpFactory object is the create_op method, which creates an operation that is associated with a given label. This is very similar to a LayerLizard’s function, though a LayerLizard has detailed knowledge and access to a Model’s internals whereas an OpFactory is meant to create a self-contained class of operators (e.g. continuously parameterized gates or on-demand embedding).

This class just provides a skeleton for an operation factory - derived classes add the actual code for creating custom objects.

Parameters

state_spaceStateSpace

The state-space of the operation(s) this factory builds.

evotypeEvotype

The evolution type of the operation(s) this factory builds.

Initialize a new ModelMember

property num_params

Get the number of independent parameters which specify this object.

Returns

int

classmethod create_by_interpolating_physical_process(target_factory, physical_process, argument_ranges, parameter_ranges, argument_indices=None, comm=None, mpi_workers_per_process=1, interpolator_and_args=None, verbosity=0)
create_object(args=None, sslbls=None)

Create the object that implements the operation associated with the given args and sslbls.

Note to developers The difference beween this method and create_op() is that this method just creates the foundational object without needing to setup its parameter indices (a technical detail which connects the created object with the originating factory’s parameters). The base-class create_op method calls create_object and then performs some additional setup on the returned object before returning it itself. Thus, unless you have a reason for implementing create_op it’s often more convenient and robust to implement this function.

Parameters
argslist or tuple

The arguments for the operation to be created. None means no arguments were supplied.

sslblslist or tuple

The list of state space labels the created operator should act on. If None, then these labels are unspecified and should be irrelevant to the construction of the operator (which typically, in this case, has some fixed dimension and no noition of state space labels).

Returns
ModelMember

Can be any type of operation, e.g. a LinearOperator, SPAMVec, Instrument, or POVM, depending on the label requested.

to_vector()

Get this object’s parameters as a 1D array of values.

Returns

numpy.ndarray

from_vector(v, close=False, dirty_value=True)

Initialize this object using a vector of parameters.

Parameters
vnumpy array

The 1D vector of parameters. Length must == num_params()

closebool, optional

Whether v is close to the current parameter vector.

dirty_valuebool, optional

The value to set this object’s “dirty flag” to before exiting this call. This is passed as an argument so it can be updated recursively. Leave this set to True unless you know what you’re doing.

Returns

None

pygsti.extras.interpygate.vec(matrix)

A function that vectorizes a matrix.

Args:

matrix (list,numpy.ndarray): NxN matrix

Returns:

numpy.ndarray: N^2x1 dimensional column vector

Raises:

ValueError: If the input matrix is not square.

pygsti.extras.interpygate.unvec(vectorized)

A function that vectorizes a process in the basis of matrix units, sorted first by column, then row.

Args:

vectorized (list,numpy.ndarray): Nx1 matrix or N-dimensional vector

Returns:

numpy.ndarray: NxN dimensional column vector

Raises:

ValueError: If the length of the input is not a perfect square

pygsti.extras.interpygate.run_process_tomography(state_to_density_matrix_fn, n_qubits=1, comm=None, verbose=False, basis='pp', time_dependent=False, opt_args=None)

A function to compute the process matrix for a quantum channel given a function that maps a pure input state to an output density matrix.

Args:
state_to_density_matrix_fn(function: array -> array)

The function that computes the output density matrix from an input pure state.

n_qubits(int, optional, default 1)

The number of qubits expected by the function. Defaults to 1.

comm(MPI.comm object, optional)

An MPI communicator object for parallel computation. Defaults to local comm.

verbose(bool, optional, default False)

How much detail to send to stdout

basis(str, optional, default ‘pp’)

The basis in which to return the process matrix

time_dependent(bool, optional, default False )

If the process is time dependent, then expect the density matrix function to return a list of density matrices, one at each time point.

opt_args(dict, optional)

Optional keyword arguments for state_to_density_matrix_fn

Returns:
numpy.ndarray

The process matrix representation of the quantum channel in the basis specified by ‘basis’. If ‘time_dependent’=True, then this will be an array of process matrices.