pygsti.models.qutrit

Routines for building qutrit gates and models

Module Contents

Functions

to_qutrit_space(input_mat)

Projects a 2-qubit unitary matrix onto the symmetric "qutrit space"

create_qutrit_model(error_scale[, x_angle, y_angle, ...])

Constructs a standard qutrit Model.

Attributes

A

X

Y

pygsti.models.qutrit.A
pygsti.models.qutrit.X
pygsti.models.qutrit.Y
pygsti.models.qutrit.to_qutrit_space(input_mat)

Projects a 2-qubit unitary matrix onto the symmetric “qutrit space”

Parameters

input_matnumpy.ndarray

the unitary matrix to project.

Returns

numpy.ndarray

pygsti.models.qutrit.create_qutrit_model(error_scale, x_angle=_np.pi / 2, y_angle=_np.pi / 2, ms_global=_np.pi / 2, ms_local=0, similarity=False, seed=None, basis='qt', evotype='default')

Constructs a standard qutrit Model.

This model contains the identity, XX, YY, and Molmer-Sorenson gates.

Parameters

error_scalefloat

Magnitude of random rotations to apply to the returned model. If zero, then perfect “ideal” gates are constructed.

x_anglefloat, optional

The rotation angle of each X in the XX gate.

y_anglefloat, optional

The rotation angle of each Y in the YY gate.

ms_globalfloat, optional

The global Molmer-Sorenson angle (theta)

ms_localfloat, optional

The local Molmer-Sorenson angle (theta)

similaritybool, optional

If true, then apply the random rotations (whose strengths are given by error_scale) as similarity transformations rather than just as post-multiplications to the ideal operation matrices.

seedint, optional

The seed used to generate random rotations.

basisstr, optional

The string abbreviation of the basis of the returned vector. Allowed values are Matrix-unit (std), Gell-Mann (gm) and Qutrit (qt). A Basis object may also be used.

evotypeEvotype or str, optional

The evolution type. The special value “default” is equivalent to specifying the value of pygsti.evotypes.Evotype.default_evotype.

Returns

Model