pygsti.models.qutrit
Routines for building qutrit gates and models
Module Contents
Functions
|
Projects a 2-qubit unitary matrix onto the symmetric "qutrit space" |
|
Constructs a standard qutrit |
Attributes
- pygsti.models.qutrit.A
- pygsti.models.qutrit.X
- pygsti.models.qutrit.Y
- pygsti.models.qutrit.to_qutrit_space(input_mat)
Projects a 2-qubit unitary matrix onto the symmetric “qutrit space”
Parameters
- input_matnumpy.ndarray
the unitary matrix to project.
Returns
numpy.ndarray
- pygsti.models.qutrit.create_qutrit_model(error_scale, x_angle=_np.pi / 2, y_angle=_np.pi / 2, ms_global=_np.pi / 2, ms_local=0, similarity=False, seed=None, basis='qt', evotype='default')
Constructs a standard qutrit
Model
.This model contains the identity, XX, YY, and Molmer-Sorenson gates.
Parameters
- error_scalefloat
Magnitude of random rotations to apply to the returned model. If zero, then perfect “ideal” gates are constructed.
- x_anglefloat, optional
The rotation angle of each X in the XX gate.
- y_anglefloat, optional
The rotation angle of each Y in the YY gate.
- ms_globalfloat, optional
The global Molmer-Sorenson angle (theta)
- ms_localfloat, optional
The local Molmer-Sorenson angle (theta)
- similaritybool, optional
If true, then apply the random rotations (whose strengths are given by error_scale) as similarity transformations rather than just as post-multiplications to the ideal operation matrices.
- seedint, optional
The seed used to generate random rotations.
- basisstr, optional
The string abbreviation of the basis of the returned vector. Allowed values are Matrix-unit (std), Gell-Mann (gm) and Qutrit (qt). A Basis object may also be used.
- evotypeEvotype or str, optional
The evolution type. The special value “default” is equivalent to specifying the value of pygsti.evotypes.Evotype.default_evotype.
Returns
Model