pygsti.optimize.customcg
¶
A custom conjugate gradient descent algorithm
Module Contents¶
Functions¶
|
Custom conjugate-gradient (CG) routine for maximizing a function. |
|
|
|
|
|
|
|
- pygsti.optimize.customcg.fmax_cg(f, x0, maxiters=100, tol=1e-08, dfdx_and_bdflag=None, xopt=None)¶
Custom conjugate-gradient (CG) routine for maximizing a function.
This function runs slower than scipy.optimize’s ‘CG’ method, but doesn’t give up or get stuck as easily, and so sometimes can be a better option.
- Parameters
f (function) – The function to optimize
x0 (numpy array) – The starting point (argument to fn).
maxiters (int, optional) – Maximum iterations.
tol (float, optional) – Tolerace for convergence (compared to absolute difference in f)
dfdx_and_bdflag (function, optional) – Function to compute jacobian of f as well as a boundary-flag.
xopt (numpy array, optional) – Used for debugging, output can be printed relating current optimum relative xopt, assumed to be a known good optimum.
- Returns
scipy.optimize.Result object – Includes members ‘x’, ‘fun’, ‘success’, and ‘message’. Note: returns the negated maximum in ‘fun’ in order to conform to the return value of other minimization routines.
- pygsti.optimize.customcg._maximize_1d(g, s1, s2, g1)¶
- pygsti.optimize.customcg._max_within_bracket(g, s1, g1, s2, g2, s3, g3)¶
- pygsti.optimize.customcg._find_boundary(g, s1, s2)¶
- pygsti.optimize.customcg._finite_diff_dfdx_and_bdflag(f, x, delta)¶